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PERTURBATION OF THE SOLUTIONS OF A SECOND ORDER
DIFFERENTTIAL EQUATION WITH PERTURBATION OF THE BOUNDARY

ABSTRACT 27 70 S
This paper is concerned with the perturbation introduced imto / [Eéf
the solutions of a second order differential equation when thg/

boundary is perturbed. The solution of the perturbed proble ’!

is expanded in a series in €. The convergence of the series

is proved for lel < 1/R (where R>O0 is a constant) ., ALAS

In reference 1, the method of reference 2 is used to analyze the perturba-/17
tion of the eigenvalues and eigenfunctions of a second order differential equa-
tion when the boundary is perturbed. In the present article, analogous methods
are invoked to investigate the perturbetion of the solutiomns.

Let us consider the following perturbed problem A €
LyeEy;+a(x)y;'*‘b(x)!/a?’fe(x); (1)

with the boundary perturbation

%0 =0, w(l+e=0 (2)

€ 1s a small parameter,
o0

fs (x) = 2 8"fn (x)v

n=0 i

tfjn(x), a(x), b(x) are analytic functions.

*Numbers in the margin indicate pagination in the original foreign text.



Note that the entire emsulng discussion carries over almost literally to

the case when the coefficients a(x), b(x) represent power series in €, i.e.,

c. 00

a(x) = a (x) = Ye'a, (2),

n=0

b(x) =be(x) =Y\ &b, (x); ‘
an(x), bn(x) are analytic functions.

For € = O, the unperturbed problem AO is obtained:

CLyy=y it a@)y+b(x)yy = fo(x)

with boundary conditions yb(o) =0, yb(l) = 0.
We will examine the two following cases. [18

Case 1. Let the unperturbed problem A  has a solution for any iIunction

0
wo(x), and for sufficiently small € # 0 let the solution yé(x) of the problem

A6 exist and be expandable in a power series in €:
Ye(X) = eyt eyt F eyt (3)

Substituting (3) into (1), (2) and equating the coefficients of identical

powers of €, we obtain

LyoEy;‘i‘a(x)y(')_"}‘b(x)yo = fo(x)s %(0) =0, y, (1) =0;

) i
Lin= v+ a6, + 0@ = 10 =0, u) ==Y D

n
I=1

The solution yb(x), of course, will not be sought; to find yl(x), we con-

sider the problem Al:

Ly = y.+a(X)y,+b(x)y1—f1(x) y1(0) 0 yx(l)--——y,(l)-l



The solution yi(x) of the problem Al has the form

) . : i
y(¥) = S G (x, 5) fy (s) ds + [— 5o (D1 91 (%),
. "~
0
where G(x,s) is a Green's function,zpl(x) is a solution of the boundary value

problem
L=y +a@y+o®un=0 50 =0nl=1

Hence it follows that
oo | < Mol Full =MLy (D1 ol =0r2§él{lyl(x)|, b () 1}

It can be demonstrated by induction that

TAPYAITE Ry E-TiA] (5)

i=1

Proceeding from (4) and (5), we prove the convergence of the expension (3)
(see case 2) by the method of majorants. The result is the following:

Theorem 1. For case 1, the solution yé(x) of the problem A_ is given by
the expansion (3), which converges for |€| < 1/R (where R is a constant inde-
pendent of € ).

Case 2. Now the limiting problem AO is not solvable for every function
ﬁo(x), and the corresponding homogeneous problem

Lyy=y, +a@®y +o(®) g =0, 5,(0) =0, y,(1) =0

has & nontrivial solution yl(x), where yi(O) £ 0, yi(l) # 0. As we know, the

homogeneous problem associated with AO’

L*2, = 2,— (az))’ Fb2 =0, 2,(0) =0, z;(I) =0

also has only one (correct to a numerical factor) contrivial solution zo(x),

where (zo, ¥,) £ O.




We will seek the solution y&(x) of the perturbed problem A _ in the form /19

98 = B (g ) o0+ Caimy) e (W Carigmg) 5 (6)

Substituting (6) onto (1), (2) and equating the coefficients of like powers
of €, we obtain
- Lyy=y +a(®)y +b(x)y =0, 410 =0, g, (1) =0,

Lyo—yo+a(x)!/o+b(x)yo—fo(x) .‘/o(o) =0, yo(1)=_coy.f.1(l)»
Ly, _yn+a(x)!/u+b(x)yn"‘fn(x) !/n(o)——o ' (7)-(8)

M 0
y“,(l)%_zc a1 ‘21 e

=0 —

To determine CO and Yos We investigate the problem
Lyo=Y,+ a(®) 4, +b() s = [o(®), 4(0) =0, 4o (1) = —coy; (1) =d. | (9)

Making use of Green's formula, we £ind that the following conditions

stipulates its solvability:

(ror Fo) = €2y (1) g, (1) = — 25 (1) d. ; (10)
Hence it follows that

1 (cos fo) | vl

lcﬁ < — el < Rffoll

A (l)y_l(l)l
Knowing c,, we find yo(x)’. If we require that the additional condition
. 1 » ‘ .
(Yor 20) = [ 40(¥) 20 (x) dx =0 (11)

be satisfied, the solution will be unique.
Lemma. The solution yb(x) of equation (9) with the condition (11) satis-

fies the following 1nequa11ty
Ilyo (x) llp =1, (@)l +1 yo (x) Hc + Il Yo (x) "c <M (fifolle +1g (M1 1""‘



where M is a constant.

Proof. Let us examine the space P of the twice continuously differentiable
functions {yo(x)} on [O, l] » satisfying the conditions yO(O) = 0 and (11), with
the norm

40 (11, = 155 G Nl 1 0 () e+ Nl o () e

We also have the space Q of all pairs {ﬂo(x), d}, where ﬂo(x) is a continuous
function on [9 ) ];l , d is a real number associated with equetion (10), with the

norm

Aol dllo=h@L+1d]

(Q is the direct sum of the space ¢ [O, 1] and the real line).
We determine the operator A from P in Q: to each yo(x)CP corresponds an

Ay

0 of Q, where

Ay =1fo (%), d1, fo (%) = g+ ay, + byo =Ly, d=go(1) = —coy_; (1);
where | O(x) and 4 satisfy the condition (10). The operator A is linear and /20
realizes a one-to-one mapping of P into Q. To each pair [_ﬂo(x), d] of Q cor-
responds a unique yo(x) of P, satisfying (9); therefore, according to Banach's

theorem (ref. 3), there exists an inverse operator Al with a finite norm

la=1l = 1, such that

”!/o(x) "p\<M“f0(x)’ d_”Q’ ;
or

155l + 1 95 e + ol < ML Falle +1d1) = MW Falle +1 50 (DD

This proves the lemma.



Let all Sy Cl""’ Ch1 and Vos Yyseees Y9 be already known; to find e,

and y, we consider the problem An:
Ly,=y,+ a(x)y,+b(x)y. = [ (fa (%)

with the boundary conditions

. & A NN '
50 =0, 4 (1) = = Yot T — Y

=0 -

By direct analogy with the above method, we immediately find that the con-

dition for its solvability is

i ({+1) ()
) i (1) y9 (1)
o =250 [E‘"-'W+,E,—T—J '
e A==0 i=

Hence it follows that

(1) 1
. ye ot () y,,_.z()
AL k“fn“‘*‘kz[Elcﬂ—’l’ |t El =] (12)
[_.
the following estimate being applicable to the solution y (x):
£ () !M_z“)
nynu\<Moufnu+Mx[§lcn-:|| - |+L| ] 13)
For proof of the convergence of the expansion (6), we utilize the method
of majorants. To formulate, in addition to (12) and (13), the required inequal-
ities, we expand the solutions y_l(x), yh(x) and the coefficients of equations
(7), (8) in power series in z in the neighborhood of the point x = 1; subsbti-

tuting these into the respective equations (7), (8) and equating coefficients

of like powers of z', we readily obtain



e M
1] +2)1

(1+2)(1)
!2! + 2)! l 2

o U+ U=k y,
3| fll’»l + S .

SO () (14)-(15)

a(k)(l) H (ln+l.-_—k)l l 2‘

i) 1y
k)l l n I

+1

Multiplying (14) b z 7" and (15) by z‘+ , then summing over . from zero to/2L

infinity, we obtain

(l+2) had (I-4-1—k)
QN _ally e 2 R QI
2 l Tt [ <l4 (I)H—zZ, l 15-;0 (t+1—k)1l i

+5:l ml [22 w“ ‘ (;’_k)k()") 'ul—k—l]’ o
k=0 I k=l ,

- (16)-(a)
bad y(l+2) m (l) * (H—l k)(l)
n 12 Zi+1=t
:Z;l +2 IZI \<|y"(l)]z+z I Z l(l-l-l-k)ll T
+22°° wlzk S _il..__k_).(_)_ l—k+| (I)l +i ,n)() 1+2‘ )
2’ Al [ — k). ' I ] ‘ l
k= fa—— _ . =0 .
- (l)(l)
We now form the system of numbers . Y, .‘/g) (1) & Yn (2) = 2 , major-
{=t. )
izing y_, y(l (1), end
y" (1)
e @li= Y |
respectively, as well as a(z), ©(z), ‘f’n’ and 'En_‘, majorizing
O e o B
1a(z)1—- . “’, 2, 16@)] = L] LAUN PO A PR
k=0 : o i
so that
Yo=llgolls ¥ (1) =145 (V50 0) =5 (0)| = 0, %o =1yl (18)

and we majorize equations (12), (13), (16), (17):



n ~141 K N
~ r O i N e
[ %=“5*@[C“Wwa+L T
_ =1 .

=1

\ Y. 7 ) E; 7O ]
\Y =M07:‘+M1[Z Cn-l (1+1)1 + & : “ ’

\ =0
= TR ) .
AW | Z 2k (19)-(22)
2+ = ) +. 2 (@ .
2\(1+2)l y-i( £ (l+1—-k)l |
: - ~ i) !
: —k=l

AY

%@) Y2+2Mﬂ%@%+ﬁb®[%@%+ 1+2h

Equations (19)-(22) with the initial values (18) enable us to generate anf22
iterative process for the successive determination of Yj’ 'Ej, and ';;r'j(z). Let
their values be known for j< n -.1. From (19)-(22) we find Y, 'E’n, and 'ﬁn(z).
Comparing (19)-(22) with their analogous inequalities (12), (13), (16), (17) and

proceeding from (18), we obtain

l9I<Y; Il <% 1y, <70
Let us examine the formal power series

Y(Z)=iyn2", C(Z)—'ECRZ, u(z) Zyn(z)z
n=0

n=0 : | (23)

N e (1)
1@ = E (111)1 2

By virtue of (19)-(22) and (23), we have



() = —Lt DT k(D)
| I —kalu_y () — y_y(D)]
Y (@) = Yo+ Mof (2) + My {le (&) s (2) — Gy (D] + (2D},
- 7 () ’
I—l@@+20@ (24)-(27)
[+ 2% ()] (Yo + Mof () + Myl @) u_y () =G YL (D)
l—z[M+Mzb (@ +a@+z6(2)]

For z = 0, these relations are ‘satisfied with the values

u_1(2) =

u@) =

Y(0)=Y,=yl u 0 = v (O,
7(0) =14(0)]=0, c(0) = =|col-

Writing the relations (24), (26), (27) in the respective forms
P(c, Uy, u2)=0, D, u,uz2 =0, F(c, uy, u, 2) =0,
we lmmediately obtain

'\P; |z=o =1, . \P;-x Iz=0 = a)kz’ '\P:'z ‘2=0 = k2' . (D‘I’ l2=° =0,
._.1, (D;‘ 0=0' F;l °=0,. F;—l|2=o=.0' Fu'\z=o=1-

2=0 - 2= 2= I

o

o,

Hence it follows that the Jacobian has a nonzero value at the point

Z = 0’ i.e-,

| Toky k|
= s, =0 1 0 [=1#0
R I S (R

It follows from the implicit function existence theorem thet the system
(2k), (26), (27) defines a system of analytic functions c(z), u_l(z), u(z) in
the neighborhood of the point z = O. By virtue of the analyticity of u_l(z),
c(z), and u(z), it follows from equation (25) that the function Y(z) is also Zigé
analytic, and the power expansions (23) go from formel to convergent for suf-
ficiently smell z. The system of equations (24)-(27) shows that the coefficients

Yj’ E'j, and Sr'j(z) of the power expansions of these functions are interrelated by

9
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equation (19)-(22). Since these power expansions converge in a certain circu-
lar region |z| < ¥, it follows that, assuming 0 < 1/R< ¥, we obtain in partic-

ular Vn.< aan, E£'< aéRn (where al, a_ are positive constants). Consequently,

2
we have proven the followlng theorem.
Theorem 2. For case 2, the solution yé(x) of the problem.Ae is given by
the expansion (7), which converges for |e€| < 1/R (where R > O is a constent
independent ofe ).
This work was carried out under the direction of L. A. Lyusternik, to
whom the author conveys his sincere appreciation.
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